DIVISION OF ARTS AND SCIENCES
DEPARTMENT OF NATURAL SCIENCES
COURSE SYLLABUS

COURSE/COURSE NUMBER/ CREDIT HOURS
Microbiology Lab MCB 2010L ; CRN 30237 ; 1.0 Credit Hour (Summer 2014 Semester)

PREREQUISITES
BSC 1010 and CHM 1045 with a grade of C or better

CLASS MEETING TIMES
Lecture: 0830 – 1210 Monday, Room D109
Lab: 0830 - 1050 Wednesday, Room D109

CLASS METHOD
Traditional Classroom Course (class meets in person)

INSTRUCTOR
Mark Preziosi
markcpreziosi@hotmail.com

OFFICE HOURS
By scheduled appointment only.

COURSE DESCRIPTION
Includes a description and taxonomy of microorganisms including bacteria, viruses, protozoa and fungi. Involves discussion of the history, significance and applications of the field. Presents lecture, Socratic hybrid online distance learning and hands-on experience with differential staining, selective media, sterile transfer and culture techniques. Also addresses regulation of microbial growth, aseptic and antisep tic technique, antibiotic sensitivity and antibiotic therapy, microbial physiology and metabolism, microbial genetics, acquired and innate immunity to microbes, wound healing as it relates to microbial infections, and the ecological and epidemiological aspects of microbial growth. Designed for students in the allied health professions, marine science and those intending to go on to major in other fields in the biological sciences and health professions.

RECOMMENDED TEXTBOOKS

MICROBIOLOGY: AN INTRODUCTION, 11th edition, Plus MasteringMicrobiology with eText Access Card @
www.masteringmicrobiology.com
Authors: Tortora, Funke, and Case
Pearson/Benjamin Cummings Publishers

MICROBIOLOGY DEMYSTIFIED, 2nd edition
Authors: Betsey and Keogh
McGraw-Hill Publishers
ISBN: 978-0-07-176109-3
COURSE OBJECTIVES

Upon course completion, students should be able to:

1. Understand and be familiar with scientific terminology (vocabulary) as it relates to the subject material.
2. Be able to engage in critical thinking such that simple to intermediate microbiological problems can be resolved using data presented in class and/or the course textbook.
3. Demonstrate an understanding of experimental design and perform simple laboratory experiments.
4. Be able to analyze and correctly interpret data obtained from laboratory experiments.

COURSE SCHEDULE

Please Note: The course schedule is subject to change as required to meet either course or student needs. If you miss a class, it is YOUR responsibility to stay current.

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Assignments-Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 May 2014</td>
<td>Experimental Design, Lab Safety, Metric System</td>
<td>Handout</td>
</tr>
<tr>
<td>21 May 2014</td>
<td>Microscope; Eukaryotic Cells</td>
<td>Handout</td>
</tr>
<tr>
<td>28 May 2014</td>
<td>Eukaryotic Cells; Prokaryotic Cells</td>
<td>Handout</td>
</tr>
<tr>
<td>04 Jun 2014</td>
<td>Test # 1</td>
<td>Test – 100 Points</td>
</tr>
<tr>
<td>11 Jun 2014</td>
<td>Environmental Monitoring</td>
<td>Handout</td>
</tr>
<tr>
<td>18 Jun 2014</td>
<td>Gram Stain</td>
<td>Handout</td>
</tr>
<tr>
<td>25 Jun 2014</td>
<td>Mitosis</td>
<td>Handout</td>
</tr>
<tr>
<td>02 Jul 2014</td>
<td>Test # 2</td>
<td>Test – 100 Points</td>
</tr>
<tr>
<td>09 Jul 2014</td>
<td>pH</td>
<td>Handout</td>
</tr>
<tr>
<td>16 Jul 2014</td>
<td>Aerobic Respiration</td>
<td>Handout</td>
</tr>
<tr>
<td>23 Jul 2014</td>
<td>Photosynthesis</td>
<td>Handout</td>
</tr>
<tr>
<td>30 Jul 2014</td>
<td>Test # 3</td>
<td>Test – 100 Points</td>
</tr>
</tbody>
</table>

EXAMS

There will be three (3) exams each worth 100 points and each exam will be cumulative to include material presented throughout the entire course. Additionally, each exam may include both lecture and textbook material.

HOMEWORK

Lab homework is due each week at the beginning of class and each assignment is worth 100 points. Upon course completion, an average of the homework grades will be calculated to derive a total maximum value of 100 points. Late homework will not be accepted.

All homework is to be submitted in hard-copy format. Electronic submission of homework will not be accepted.

CLASS POLICIES

1. All cell phones are to remain off during class.
2. Any student with three (3) or more unexcused absences in either lecture or lab will be automatically dropped from the class.
3. Missed laboratories cannot be made up for any reason whatsoever. Additionally, homework from missed labs will not be accepted and the student will receive a grade of zero (0) on any missed homework assignment.
4. Makeup tests are allowed only with a written doctor's excuse and must be taken the same day as the final exam.
5. Test dates are available the first day of class and students should prepare in advance to take tests as scheduled. All exams will be closed book/notes.
6. The final exam cannot be made up for any reason whatsoever.

READING ASSIGNMENTS

To succeed in this course each student should minimally read the assigned textbook readings as presented in the course schedule and review class notes frequently. The most successful students are those who form study groups which meet regularly (weekly or more) throughout the course to review material and learn by questioning and teaching each other.

Vocabulary is key to success in this course. Failure to master the scientific vocabulary associated with this course will likely result in poor performance on both tests and class participation activities.
PARTICIPATION

Students are expected to attend and participate in every class. Many students are unsuccessful in this course because they believe if they just "show up" they will pass. The lectures address only a sub-set of the material which needs to be mastered and which will be subsequently tested on the exams. Arriving late, leaving early, cell phone/computer usage or any other disruption of class may result in dismissal from the course.

GRADING SCALE

The course consists of:

1. Three (3) exams, each worth 100 points
2. Laboratory homework assignments, each worth 100 points which will be averaged for a possible maximum value of 100 points.

Total possible points available = 400 points

Final grades are a function of total points accumulated during the course as indicated in the table below:

NOTE: Test (exam) scores are not curved and, in the event a test or final grade is lower than expected, extra credit will not be given to raise a grade.

<table>
<thead>
<tr>
<th>Final Grade</th>
<th>Point Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>360-400</td>
</tr>
<tr>
<td>B</td>
<td>320-359</td>
</tr>
<tr>
<td>C</td>
<td>280-319</td>
</tr>
<tr>
<td>D</td>
<td>240-279</td>
</tr>
<tr>
<td>F</td>
<td><240</td>
</tr>
</tbody>
</table>

Students are expected to familiarize themselves with FKCC policies which can be found in the current Student Handbook.